Reduced Basis Collocation Methods for Partial Differential Equations with Random Coefficients
نویسندگان
چکیده
منابع مشابه
Reduced Basis Collocation Methods for Partial Differential Equations with Random Coefficients
The sparse grid stochastic collocation method is a new method for solving partial differential equations with random coefficients. However, when the probability space has high dimensionality, the number of points required for accurate collocation solutions can be large, and it may be costly to construct the solution. We show that this process can be made more efficient by combining collocation ...
متن کاملA Kernel-based Collocation Method for Elliptic Partial Differential Equations with Random Coefficients
This paper is an extension of previous work where we laid the foundation for the kernel-based collocation solution of stochastic partial differential equations (SPDEs), but dealt only with the simpler problem of right-hand-side Gaussian noises. In the present paper we show that kernel-based collocation methods can be used to approximate the solutions of high-dimensional elliptic partial differe...
متن کاملHigh-Order Collocation Methods for Differential Equations with Random Inputs
Recently there has been a growing interest in designing efficient methods for the solution of ordinary/partial differential equations with random inputs. To this end, stochastic Galerkin methods appear to be superior to other nonsampling methods and, in many cases, to several sampling methods. However, when the governing equations take complicated forms, numerical implementations of stochastic ...
متن کاملAdaptive Collocation Methods for the Solution of Partial Differential Equations
An integration algorithm that conjugates a Method of Lines (MOL) strategy based on finite differences space discretizations, with a collocation strategy based on increasing level dyadic grids is presented. It reveals potential either as a grid generation procedure and a Partial Differential Equation (PDE) integration scheme. It copes satisfactorily with a example characterized by a steep travel...
متن کاملA Weighted Reduced Basis Method for Elliptic Partial Differential Equations with Random Input Data
In this work we propose and analyze a weighted reduced basis method to solve elliptic partial differential equation (PDE) with random input data. The PDE is first transformed into a weighted parametric elliptic problem depending on a finite number of parameters. Distinctive importance at different values of the parameters are taken into account by assigning different weight to the samples in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification
سال: 2013
ISSN: 2166-2525
DOI: 10.1137/120881841